What is Gyroscope?, Gyroscopes review, use, types, advantages and disadvantages
Gyroscopes are used in the inertial navigation systems of aircraft, ships, spacecraft & satellites, It is used for navigation & angular velocity measurement, It measures the rotational velocity of one, two or three direction axis, The 3-axis accelerometer is used to implement a 3-axis gyroscope, There are many types of gyroscopes such as Mechanical Gyroscope, Electronic gyroscope & MEMS gyroscope.
What is Gyroscope?
The gyroscope can sense the change in the orientation of the device, and when paired with an accelerometer, It is an excellent tool for measuring the orientation of an object in 3D space, Gyroscopes determine the angular velocity (ω) typically measured in radians/second, The integration of angular velocity offers the orientation information (if the initial orientation is provided or the value can be assumed) across three axes: pitch, roll & yaw.
The gyroscope allows tracking of the twists, turns & rolls of the object in motion, Access to more accurate orientation information has wide-ranging practical applications, helping the land-based robot account for the obstacles it runs over, translating the person’s real-world movement into the virtual world, or helping to orient the aircraft in flight.
Gyroscopes use
Gyroscopes can be used in gyrotheodolites to maintain the direction in tunnel mining due to their precision, The gyrotheodolite is composed of a gyroscope mounted to the theodolite & it is used to determine the orientation of true north, Gyroscopes can be used to construct gyrocompasses, that complement or replace the magnetic compasses (in ships, aircraft & spacecraft, vehicles in general).
Gyroscopes can be used to assist in stability (bicycles, motorcycles, and ships) or can be used as part of the inertial guidance system, Gyroscope is used in many applications, It is used in military ordinance to provide backup in case an onboard GPS system fails, It is used in 3D game controllers, headsets, digital cameras, drones, automotive systems, etc.
gyroscopes can be used in inertial navigation systems, in the Hubble Telescope, or inside the steel hull of a submerged submarine, gyroscopes can be used to measure or maintain orientation and angular velocity.
Gyroscopes types
The mechanical gyroscope is a simple wheel that is mounted on 2-3 gimbals (pivoted supports, typically rings, that allow the wheel to rotate on a single axis), A fiber optic gyroscope can use the interference of the light to detect the mechanical rotation, The two halves of the split beam travel in opposite directions in a coil of fiber optic cable as long as 5 km, it can use of the Sagnac effect like the ring laser gyroscope.
MEMS gyroscope uses MEMS technology, It has a very small vibrating mechanism to detect orientation changes, Microchip-packaged MEMS gyroscopes are found in electronic devices, solid-state ring lasers, fiber optic gyroscopes, and extremely sensitive quantum gyroscopes.
MEMS-Based Gyroscope (MEMS) is a significantly smaller form factor than other gyroscopes, It can be integrated with a digital interface in a single cost-effective package, It has lower power, It offers a significantly lower cost than FOG or RLG and therefore able to be used in mass-market consumer products.
Fiber Optic Gyroscopes (FOG) have high-shock applications such as gun pointing systems (however, they often need to be paired with multiple-axis FOG and accelerometers to overcome their sensitivity to vibrations), they have high-performance space applications, Fiber optic gyrocompasses for navigation systems, Inertial navigation systems of guided missiles, Remotely-operated vehicles, autonomous underwater vehicles & Surveying equipment.
Advantages of Gyroscopes
MEMS gyroscope is extremely small and light in weight, Gyroscope sensor resolution depends largely on the spin rate of the roto, it is much higher than other force or tilt sensors, The compass of the Gyroscope indicates true north as opposed to magnetic north, unlike magnetic compass, so, they are preferred sensors for high precision navigation systems.
Gyroscope is fast in operation, It measures relative orientation on all three axes, Gyroscope measures all types of rotation, but not movement, It can measure angular velocity, Fiber Optic Gyroscopes (FOG) have extremely precise rotational rate information, It has no moving parts, It doesn’t rely on inertial resistance to movement, It typically shows higher resolution than RLG.
Ring Laser Gyroscopes is used in inertial navigation systems in military aircraft, commercial airliners, ships & spacecraft, It has a high performance, It offers high accuracy, better than 0.01°/hour bias uncertainty, MTBF (mean time between failures) greater than 60k hours, There are no mechanical or moving parts to create friction, so there is no drift.
Disadvantages of Gyroscopes
Gyroscopes are a more expensive alternative to navigation and tilt sensing applications, Due to advancements in MEMS technology, MEMS versions of gyroscopes are available at lower costs, Free moving gyroscope depends on the rotation of the Earth, so, fast-moving objects moving on trajectory from the east to the west can’t use gyroscopes for navigation purpose.
Gyroscopes do not measure linear motion in any direction or any static angle of orientation, It is subjected to relative azimuth drift, unlike compass, Fiber Optic Gyroscopes (FOG) has longer production times due to higher calibration requirements, It can only be used for single axis, to get multiple-axis information, multiple FOGs are needed.
MEMS-Based Gyroscope (MEMS) has less stability over temperature, humidity and stress, some of which can be compensated for software, It offers more integration error relative to FOG or RLG, It often has varied performance across lots of units.
What are the importance and uses of Satellites in our life?
Global Navigation Satellite System (GNSS) types, uses & importance
Global Positioning System (GPS Tracking System) advantages and disadvantages
Very helpful website.
Thank you very much for your comment